Logo

Lineare Gleichungssysteme mit 4 Unbekannten (8. Klasse)

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren – geeignet ab Klasse 8
Kategorie―→ Gleichungen―→ Lineare Gleichungssysteme
Verwenden Neu Generieren

Aufgabe

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} 7\,z & \hspace{-0.7em} + & \hspace{-0.7em} \,\,t & \hspace{-0.7em} = & \hspace{-0.7em} -42\\ & \hspace{-0.7em} & \hspace{-0.7em} -4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 3\,z & \hspace{-0.7em} + & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -38\\ 3\,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y & \hspace{-0.7em} + & \hspace{-0.7em} \,\,z & \hspace{-0.7em} - & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} 11\\ & \hspace{-0.7em} & \hspace{-0.7em} -6\,y & \hspace{-0.7em} - & \hspace{-0.7em} 6\,z & \hspace{-0.7em} + & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} 6\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z & \hspace{-0.7em} + & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} 45\\ 3\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} 19\\ -7\,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -53\\ \,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 6\,z & \hspace{-0.7em} + & \hspace{-0.7em} 5\,t & \hspace{-0.7em} = & \hspace{-0.7em} 86\end{array}$$
  3. $$\begin{array}[t]{rcrcrcrcr}-4\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -20\\ -4\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} - & \hspace{-0.7em} 7\,t & \hspace{-0.7em} = & \hspace{-0.7em} 20\\ 3\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} \,\,z & \hspace{-0.7em} + & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} -2\\ \,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em} - & \hspace{-0.7em} 2\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 4\end{array}$$
  4. $$\begin{array}[t]{rcrcrcrcr}-6\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} + & \hspace{-0.7em} 3\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 27\\ 3\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} \,\,z & \hspace{-0.7em} - & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -16\\ 5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} \,\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -33\\ & \hspace{-0.7em} & \hspace{-0.7em} -\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -14\end{array}$$
weitere Unteraufgaben