Lineare Gleichungssysteme mit 4 Unbekannten (8. Klasse)
Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren – geeignet ab Klasse 8
Kategorie―→
Gleichungen―→
Lineare Gleichungssysteme
Aufgabe
Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:
- $$\begin{array}[t]{rcrcrcrcr}5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} -17\\ 4\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 6\,z & \hspace{-0.7em} - & \hspace{-0.7em} 5\,t & \hspace{-0.7em} = & \hspace{-0.7em} 0\\ & \hspace{-0.7em} & \hspace{-0.7em} 6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z & \hspace{-0.7em} + & \hspace{-0.7em} 7\,t & \hspace{-0.7em} = & \hspace{-0.7em} -1\\ -4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 7\,z & \hspace{-0.7em} - & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} 52\end{array}$$
- $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} - & \hspace{-0.7em} 6\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 39\\ -2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} - & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -10\\ & \hspace{-0.7em} & \hspace{-0.7em} -6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 3\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 0\\ & \hspace{-0.7em} & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 4\,z & \hspace{-0.7em} - & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -40\end{array}$$
- $$\begin{array}[t]{rcrcrcrcr} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} 6\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -12\\ -7\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} + & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} 10\\ 4\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} 8\\ 2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 7\,z & \hspace{-0.7em} - & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} 25\end{array}$$
- $$\begin{array}[t]{rcrcrcrcr}2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} + & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} -15\\ 5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} - & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} 25\\ 2\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em}- & \hspace{-0.7em} \,\,t & \hspace{-0.7em} = & \hspace{-0.7em} 25\\ & \hspace{-0.7em} & \hspace{-0.7em} 5\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -13\end{array}$$