Lineare Gleichungssysteme mit 3 Unbekannten (8. Klasse)
Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren – geeignet ab Klasse 8
Kategorie―→
Gleichungen―→
Lineare Gleichungssysteme
Aufgabe
Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:
- $$\begin{array}[t]{rcrcrcrcr}6\,x & \hspace{-0.7em} + & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 10\\ 7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 20\\ -\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} -19\end{array}$$
- $$\begin{array}[t]{rcrcrcrcr}2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 7\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z & \hspace{-0.7em} = & \hspace{-0.7em} -21\\ 3\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} = & \hspace{-0.7em} -25\\ -4\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} 14\end{array}$$
- $$\begin{array}[t]{rcrcrcrcr}-7\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} -21\\ -7\,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y & \hspace{-0.7em} + & \hspace{-0.7em} 6\,z & \hspace{-0.7em} = & \hspace{-0.7em} -9\\ 5\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 45\end{array}$$
- $$\begin{array}[t]{rcrcrcrcr}5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -57\\ -2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z & \hspace{-0.7em} = & \hspace{-0.7em} 24\\ 5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z & \hspace{-0.7em} = & \hspace{-0.7em} -9\end{array}$$