Logo

Suchergebnis für „linear“

Aufstellen einer lineare Funktion

Bestimmung der Funktionsgleichung anhand des Graphen einer linearen Funktion

Stelle anhand des Graphen die lineare Funktionsgleichung auf:

  1. x−4   −3   −2   −1   123 y−4−3−2−10123 f g h
  2. x−4   −3   −2   −1   123 y−4−3−2−10123 f g h

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} = & \hspace{-0.7em} 35\\ -7\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em} = & \hspace{-0.7em} -49\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} -47\\ -5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} = & \hspace{-0.7em} 45\end{array}$$

Lineare Gleichungen

Lösen linearer Gleichungen durch Äquivalenzumformung

Löse die folgenden linearen Gleichungen:

  1. $$5\,x=-5$$
  2. $$4+5\,x=19$$
  3. $$10\,x=0+5\,x$$

Zeichnen einer lineare Funktion

Zeichnen des Graphen einer linearen Funktion anhand ihrer Funktionsgleichung

Zeichne anhand der linearen Funktionsgleichung den Graphen der Funktion in ein geeignetes Koordinatensystem:

  1. $$\begin{aligned}[t]f(x) &= -\frac{4}{3}\,x+1 \\ \end{aligned}$$
  2. $$\begin{aligned}[t]f(x) &= -\frac{1}{4}\,x-\frac{3}{2} \\ \end{aligned}$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} = & \hspace{-0.7em} -22\\ & \hspace{-0.7em} & \hspace{-0.7em} -4\,y & \hspace{-0.7em} - & \hspace{-0.7em} 6\,z & \hspace{-0.7em} = & \hspace{-0.7em} -16\\ 6\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} -9\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} -16\\ -2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 7\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} = & \hspace{-0.7em} -56\\ & \hspace{-0.7em} & \hspace{-0.7em} 6\,y & \hspace{-0.7em} - & \hspace{-0.7em} 6\,z & \hspace{-0.7em} = & \hspace{-0.7em} 0\end{array}$$