Logo

Suchergebnis für „linear“

Aufstellen einer lineare Funktion

Bestimmung der Funktionsgleichung anhand des Graphen einer linearen Funktion

Stelle anhand des Graphen die lineare Funktionsgleichung auf:

  1. x−4   −3   −2   −1   123 y−4−3−2−10123 f g h
  2. x−4   −3   −2   −1   123 y−4−3−2−10123 f g h

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}4\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} = & \hspace{-0.7em} 24\\ -7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} 3\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} -15\\ 2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} -33\end{array}$$

Lineare Gleichungen

Lösen linearer Gleichungen durch Äquivalenzumformung

Löse die folgenden linearen Gleichungen:

  1. $$-6=2\,x$$
  2. $$-20-5\,x=-4-x$$
  3. $$5=4\,x+5$$

Zeichnen einer lineare Funktion

Zeichnen des Graphen einer linearen Funktion anhand ihrer Funktionsgleichung

Zeichne anhand der linearen Funktionsgleichung den Graphen der Funktion in ein geeignetes Koordinatensystem:

  1. $$\begin{aligned}[t]f(x) &= -\frac{4}{3}\,x-1 \\ \end{aligned}$$
  2. $$\begin{aligned}[t]f(x) &= 4\,x-\frac{1}{2} \\ \end{aligned}$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 29\\ -5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} 17\\ & \hspace{-0.7em} & \hspace{-0.7em} 3\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} -12\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} = & \hspace{-0.7em} -61\\ 3\,x & \hspace{-0.7em} - & \hspace{-0.7em} 2\,y & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} = & \hspace{-0.7em} 13\\ -\,x & \hspace{-0.7em} + & \hspace{-0.7em} 7\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 34\end{array}$$