Logo

Suchergebnis für „linear“

Aufstellen einer lineare Funktion

Bestimmung der Funktionsgleichung anhand des Graphen einer linearen Funktion

Stelle anhand des Graphen die lineare Funktionsgleichung auf:

  1. x−4   −3   −2   −1   123 y−4−3−2−10123 f g h
  2. x−4   −3   −2   −1   123 y−4−3−2−10123 f g h

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} 15\\ 3\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} 12\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}4\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 8\\ -2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} = & \hspace{-0.7em} 26\end{array}$$

Lineare Gleichungen

Lösen linearer Gleichungen durch Äquivalenzumformung

Löse die folgenden linearen Gleichungen:

  1. $$-20+x=6\,x$$
  2. $$9=4\,x-3$$
  3. $$9\,x-5=-5+4\,x$$

Zeichnen einer lineare Funktion

Zeichnen des Graphen einer linearen Funktion anhand ihrer Funktionsgleichung

Zeichne anhand der linearen Funktionsgleichung den Graphen der Funktion in ein geeignetes Koordinatensystem:

  1. $$\begin{aligned}[t]f(x) &= 1 \\ \end{aligned}$$
  2. $$\begin{aligned}[t]f(x) &= x \\ \end{aligned}$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} -32\\ -5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} \,\,z & \hspace{-0.7em} = & \hspace{-0.7em} -32\\ 2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} 19\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}4\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 25\\ 2\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 6\,z & \hspace{-0.7em} = & \hspace{-0.7em} -8\\ 5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z & \hspace{-0.7em} = & \hspace{-0.7em} -3\end{array}$$