Logo

Suchergebnis für „gleichungssystem“

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} 6\\ -5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em} = & \hspace{-0.7em} 0\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-3\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 12\\ -5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} 11\end{array}$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} = & \hspace{-0.7em} 10\\ -\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 20\\ 3\,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} -20\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 4\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -20\\ -5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -22\\ 2\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} -2\end{array}$$

Lineare Gleichungssysteme mit 4 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr} & \hspace{-0.7em} & \hspace{-0.7em} \,y & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} - & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} 5\\ 7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 4\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -44\\ 3\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 7\,t & \hspace{-0.7em} = & \hspace{-0.7em} -30\\ 6\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} + & \hspace{-0.7em} 7\,t & \hspace{-0.7em} = & \hspace{-0.7em} 14\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z & \hspace{-0.7em} + & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -6\\ -3\,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} 0\\ 4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 4\\ -4\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 3\,z & \hspace{-0.7em} + & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} -7\end{array}$$

Reinquadratische Gleichungen

Lösen reinquadratischer Gleichungen durch Äquivalenzumformung und Wurzel ziehen

Löse die folgenden reinquadratischen Gleichungen:

  1. $$-4\,{x}^{2}=-100$$
  2. $$-{x}^{2}=-36$$
  3. $$2\,{x}^{2}=8$$

p-q-Formel

Lösen quadratischer Gleichungen der Allgemeinform mit der p-q-Formel

Löse die folgenden quadratischen Gleichungen mit Hilfe der p-q-Formel:

  1. $${x}^{2}-6\,x+8=0$$
  2. $${x}^{2}+x-90=0$$
  3. $${x}^{2}+5\,x+6=0$$