Logo

Suchergebnis für „gleichungssystem“

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} = & \hspace{-0.7em} -14\\ -4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 4\,y & \hspace{-0.7em} = & \hspace{-0.7em} 32\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 2\,y & \hspace{-0.7em} = & \hspace{-0.7em} -12\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em} = & \hspace{-0.7em} 2\end{array}$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}\,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z & \hspace{-0.7em} = & \hspace{-0.7em} 23\\ 7\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} + & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} -51\\ 4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} = & \hspace{-0.7em} -23\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr} & \hspace{-0.7em} & \hspace{-0.7em} -7\,y & \hspace{-0.7em} + & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} 44\\ \,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} = & \hspace{-0.7em} 42\\ 2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} = & \hspace{-0.7em} -24\end{array}$$

Lineare Gleichungssysteme mit 4 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}6\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} 3\,z & \hspace{-0.7em} + & \hspace{-0.7em} 7\,t & \hspace{-0.7em} = & \hspace{-0.7em} -31\\ 7\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 6\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 49\\ -\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} -15\\ 3\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} + & \hspace{-0.7em} \,\,t & \hspace{-0.7em} = & \hspace{-0.7em} 63\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -4\\ -2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 7\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z & \hspace{-0.7em} - & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -38\\ 4\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} - & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} 21\\ 6\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -72\end{array}$$

Reinquadratische Gleichungen

Lösen reinquadratischer Gleichungen durch Äquivalenzumformung und Wurzel ziehen

Löse die folgenden reinquadratischen Gleichungen:

  1. $$5\,{x}^{2}-45=0$$
  2. $${x}^{2}-49=0$$
  3. $$4\,{x}^{2}=324$$

p-q-Formel

Lösen quadratischer Gleichungen der Allgemeinform mit der p-q-Formel

Löse die folgenden quadratischen Gleichungen mit Hilfe der p-q-Formel:

  1. $${x}^{2}+5\,x+0=0$$
  2. $${x}^{2}-2\,x+1=0$$
  3. $${x}^{2}-10\,x+24=0$$