Logo

Suchergebnis für „gleichung“

Reinquadratische Gleichungen

Lösen reinquadratischer Gleichungen durch Äquivalenzumformung und Wurzel ziehen

Löse die folgenden reinquadratischen Gleichungen:

  1. $$-{x}^{2}=-81$$
  2. $$-5\,{x}^{2}+45=0$$
  3. $$5\,{x}^{2}=20$$

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} = & \hspace{-0.7em} -30\\ -2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} 21\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} = & \hspace{-0.7em} 8\\ 2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 4\,y & \hspace{-0.7em} = & \hspace{-0.7em} -16\end{array}$$

Lineare Gleichungen

Lösen linearer Gleichungen durch Äquivalenzumformung

Löse die folgenden linearen Gleichungen:

  1. $$4\,x+18=8\,x+2$$
  2. $$-3=3\,x$$
  3. $$3\,x+4=7$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-6\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} -22\\ -5\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em} - & \hspace{-0.7em} 6\,z & \hspace{-0.7em} = & \hspace{-0.7em} -21\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 25\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 6\\ -2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} -8\\ -\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} -26\end{array}$$

Lineare Gleichungssysteme mit 4 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} 17\\ 2\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z & \hspace{-0.7em} + & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} 13\\ 4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y & \hspace{-0.7em} - & \hspace{-0.7em} 7\,z & \hspace{-0.7em} + & \hspace{-0.7em} \,\,t & \hspace{-0.7em} = & \hspace{-0.7em} -37\\ 6\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 6\,z & \hspace{-0.7em} - & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -28\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr} & \hspace{-0.7em} & \hspace{-0.7em} -7\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -49\\ -7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} - & \hspace{-0.7em} 7\,z & \hspace{-0.7em} + & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} 145\\ & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} \,z & \hspace{-0.7em} + & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} 8\\ 3\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} - & \hspace{-0.7em} 2\,z & \hspace{-0.7em} + & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} 27\end{array}$$