Logo

Suchergebnis für „gleichung“

Reinquadratische Gleichungen

Lösen reinquadratischer Gleichungen durch Äquivalenzumformung und Wurzel ziehen

Löse die folgenden reinquadratischen Gleichungen:

  1. $${x}^{2}=100$$
  2. $$-{x}^{2}+49=0$$
  3. $$-4\,{x}^{2}+100=0$$

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-4\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em} = & \hspace{-0.7em} 19\\ & \hspace{-0.7em} & \hspace{-0.7em} 6\,y & \hspace{-0.7em} = & \hspace{-0.7em} 6\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} = & \hspace{-0.7em} -9\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y & \hspace{-0.7em} = & \hspace{-0.7em} 6\end{array}$$

Lineare Gleichungen

Lösen linearer Gleichungen durch Äquivalenzumformung

Löse die folgenden linearen Gleichungen:

  1. $$-3+7\,x=1+5\,x$$
  2. $$3\,x=-3$$
  3. $$10+4\,x=9\,x$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr} & \hspace{-0.7em} & \hspace{-0.7em} -3\,y & \hspace{-0.7em} - & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 35\\ 3\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} 19\\ -5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} - & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 71\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}7\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} = & \hspace{-0.7em} 37\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} -12\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} -7\end{array}$$

Lineare Gleichungssysteme mit 4 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}5\,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 31\\ 6\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em}- & \hspace{-0.7em} \,\,t & \hspace{-0.7em} = & \hspace{-0.7em} 1\\ \,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} - & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} -62\\ -7\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -28\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} 3\\ 3\,x & \hspace{-0.7em} + & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} \,\,z & \hspace{-0.7em} - & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} 25\\ & \hspace{-0.7em} & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} + & \hspace{-0.7em} \,\,t & \hspace{-0.7em} = & \hspace{-0.7em} 6\\ -\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 2\,z & \hspace{-0.7em} - & \hspace{-0.7em} 7\,t & \hspace{-0.7em} = & \hspace{-0.7em} -5\end{array}$$