Logo

Suchergebnis für „gleichung“

Reinquadratische Gleichungen

Lösen reinquadratischer Gleichungen durch Äquivalenzumformung und Wurzel ziehen

Löse die folgenden reinquadratischen Gleichungen:

  1. $$-3\,{x}^{2}+192=0$$
  2. $$-4\,{x}^{2}+16=0$$
  3. $$-{x}^{2}+64=0$$

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-4\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} 27\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} = & \hspace{-0.7em} -8\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} = & \hspace{-0.7em} 19\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y & \hspace{-0.7em} = & \hspace{-0.7em} -7\end{array}$$

Lineare Gleichungen

Lösen linearer Gleichungen durch Äquivalenzumformung

Löse die folgenden linearen Gleichungen:

  1. $$5\,x-8=7\,x+2$$
  2. $$8=4\,x$$
  3. $$x+15=4\,x$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-4\,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z & \hspace{-0.7em} = & \hspace{-0.7em} -18\\ -5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 7\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z & \hspace{-0.7em} = & \hspace{-0.7em} -12\\ 6\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} -29\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -9\\ -7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 7\,z & \hspace{-0.7em} = & \hspace{-0.7em} -91\\ 5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} + & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} 67\end{array}$$

Lineare Gleichungssysteme mit 4 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} 6\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -24\\ & \hspace{-0.7em} & \hspace{-0.7em} 5\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} 4\\ -3\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} + & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} 39\\ -\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -10\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} + & \hspace{-0.7em} 5\,t & \hspace{-0.7em} = & \hspace{-0.7em} -18\\ -5\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z & \hspace{-0.7em} - & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -2\\ 3\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 6\\ 3\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 6\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 6\end{array}$$