Logo

Suchergebnis für „gleichung“

Reinquadratische Gleichungen

Lösen reinquadratischer Gleichungen durch Äquivalenzumformung und Wurzel ziehen

Löse die folgenden reinquadratischen Gleichungen:

  1. $$-5\,{x}^{2}=-180$$
  2. $$2\,{x}^{2}-72=0$$
  3. $$-2\,{x}^{2}=-72$$

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-6\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} = & \hspace{-0.7em} 16\\ -4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em} = & \hspace{-0.7em} 49\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} = & \hspace{-0.7em} 5\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} = & \hspace{-0.7em} -15\end{array}$$

Lineare Gleichungen

Lösen linearer Gleichungen durch Äquivalenzumformung

Löse die folgenden linearen Gleichungen:

  1. $$x=-x+0$$
  2. $$1+5\,x=26$$
  3. $$16-4\,x=0$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-6\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} -48\\ \,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} 15\\ -4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} - & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 8\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-7\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} 13\\ 7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em} - & \hspace{-0.7em} 5\,z & \hspace{-0.7em} = & \hspace{-0.7em} -18\\ -2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 9\end{array}$$

Lineare Gleichungssysteme mit 4 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-6\,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y & \hspace{-0.7em} + & \hspace{-0.7em} \,\,z & \hspace{-0.7em} - & \hspace{-0.7em} 5\,t & \hspace{-0.7em} = & \hspace{-0.7em} -11\\ -3\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} + & \hspace{-0.7em} 7\,t & \hspace{-0.7em} = & \hspace{-0.7em} -1\\ -3\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} \,\,t & \hspace{-0.7em} = & \hspace{-0.7em} 23\\ & \hspace{-0.7em} & \hspace{-0.7em} 6\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} + & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -41\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 4\,y & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} + & \hspace{-0.7em} 7\,t & \hspace{-0.7em} = & \hspace{-0.7em} -60\\ 4\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 4\\ -6\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} 29\\ -7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} 6\,z & \hspace{-0.7em} - & \hspace{-0.7em} 5\,t & \hspace{-0.7em} = & \hspace{-0.7em} 2\end{array}$$