Logo

Suchergebnis für „gleichung“

Reinquadratische Gleichungen

Lösen reinquadratischer Gleichungen durch Äquivalenzumformung und Wurzel ziehen

Löse die folgenden reinquadratischen Gleichungen:

  1. $$-4\,{x}^{2}+100=0$$
  2. $$-3\,{x}^{2}=-243$$
  3. $$-5\,{x}^{2}=-180$$

Lineare Gleichungssysteme mit 2 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} = & \hspace{-0.7em} 0\\ 3\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y & \hspace{-0.7em} = & \hspace{-0.7em} -4\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-6\,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y & \hspace{-0.7em} = & \hspace{-0.7em} -19\\ -4\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em} = & \hspace{-0.7em} 9\end{array}$$

Lineare Gleichungen

Lösen linearer Gleichungen durch Äquivalenzumformung

Löse die folgenden linearen Gleichungen:

  1. $$-1=-1+5\,x$$
  2. $$-4=4\,x$$
  3. $$-2+5\,x=18+x$$

Lineare Gleichungssysteme mit 3 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} -19\\ 7\,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} 2\\ -4\,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -23\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr} & \hspace{-0.7em} & \hspace{-0.7em} -5\,y & \hspace{-0.7em} + & \hspace{-0.7em} 6\,z & \hspace{-0.7em} = & \hspace{-0.7em} -61\\ \,x & \hspace{-0.7em} - & \hspace{-0.7em} 7\,y & \hspace{-0.7em} + & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} -59\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} - & \hspace{-0.7em} 2\,z & \hspace{-0.7em} = & \hspace{-0.7em} 27\end{array}$$

Lineare Gleichungssysteme mit 4 Unbekannten

Lösen linearer Gleichungssysteme (LGS) durch Gleichsetzungsverfahren, Einsetzungsverfahren oder Additionsverfahren

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -72\\ 5\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} 18\\ 3\,x & \hspace{-0.7em} - & \hspace{-0.7em} 6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 3\,z & \hspace{-0.7em} + & \hspace{-0.7em} 2\,t & \hspace{-0.7em} = & \hspace{-0.7em} -6\\ -2\,x & \hspace{-0.7em} - & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -3\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-3\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 2\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -16\\ -5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -17\\ 2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y & \hspace{-0.7em} - & \hspace{-0.7em} 7\,z & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} 34\\ -6\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z & \hspace{-0.7em} + & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -24\end{array}$$