Logo

Suchergebnis für „gleichung“

Reinquadratische Gleichungen

Lösen Sie die folgenden reinquadratischen Gleichungen:

  1. $${x}^{2}-1=0$$
  2. $$-{x}^{2}+64=0$$
  3. $$-3\,{x}^{2}+12=0$$

Lineare Gleichungssysteme mit 2 Unbekannten

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-5\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 25\\ \,x & \hspace{-0.7em} + & \hspace{-0.7em} \,\,y & \hspace{-0.7em} = & \hspace{-0.7em} 2\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}7\,x & \hspace{-0.7em} + & \hspace{-0.7em} 5\,y & \hspace{-0.7em} = & \hspace{-0.7em} -26\\ 5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y & \hspace{-0.7em} = & \hspace{-0.7em} -17\end{array}$$

Lineare Gleichungen

Löse die folgenden linearen Gleichungen:

  1. $$-2\,x=-3-5\,x$$
  2. $$5\,x=2\,x+0$$
  3. $$0=3\,x$$

Lineare Gleichungssysteme mit 3 Unbekannten

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-3\,x& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 3\,z & \hspace{-0.7em} = & \hspace{-0.7em} -15\\ -\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} = & \hspace{-0.7em} 72\\ 4\,x & \hspace{-0.7em} - & \hspace{-0.7em} 2\,y & \hspace{-0.7em} + & \hspace{-0.7em} 7\,z & \hspace{-0.7em} = & \hspace{-0.7em} 27\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-6\,x & \hspace{-0.7em} + & \hspace{-0.7em} 7\,y & \hspace{-0.7em} - & \hspace{-0.7em} 7\,z & \hspace{-0.7em} = & \hspace{-0.7em} -39\\ -5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 3\,y & \hspace{-0.7em} - & \hspace{-0.7em} 4\,z & \hspace{-0.7em} = & \hspace{-0.7em} -24\\ 2\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y & \hspace{-0.7em}- & \hspace{-0.7em} \,\,z & \hspace{-0.7em} = & \hspace{-0.7em} 9\end{array}$$

Lineare Gleichungssysteme mit 4 Unbekannten

Löse die folgenden Gleichungssysteme mit einem Verfahren deiner Wahl:

  1. $$\begin{array}[t]{rcrcrcrcr}-4\,x & \hspace{-0.7em} - & \hspace{-0.7em} 5\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 4\,t & \hspace{-0.7em} = & \hspace{-0.7em} -3\\ 4\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} -2\\ 2\,x & \hspace{-0.7em}- & \hspace{-0.7em} \,\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 6\,t & \hspace{-0.7em} = & \hspace{-0.7em} 39\\ -2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} - & \hspace{-0.7em} 7\,t & \hspace{-0.7em} = & \hspace{-0.7em} 42\end{array}$$
  2. $$\begin{array}[t]{rcrcrcrcr}-5\,x & \hspace{-0.7em} + & \hspace{-0.7em} 6\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em}- & \hspace{-0.7em} \,\,t & \hspace{-0.7em} = & \hspace{-0.7em} -36\\ 2\,x & \hspace{-0.7em} + & \hspace{-0.7em} 2\,y& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} + & \hspace{-0.7em} 3\,t & \hspace{-0.7em} = & \hspace{-0.7em} -25\\ -3\,x & \hspace{-0.7em} - & \hspace{-0.7em} 3\,y & \hspace{-0.7em} + & \hspace{-0.7em} 5\,z& \hspace{-0.7em} & \hspace{-0.7em} & \hspace{-0.7em} = & \hspace{-0.7em} 40\\ & \hspace{-0.7em} & \hspace{-0.7em} 4\,y & \hspace{-0.7em} + & \hspace{-0.7em} 2\,z & \hspace{-0.7em} - & \hspace{-0.7em} 5\,t & \hspace{-0.7em} = & \hspace{-0.7em} 11\end{array}$$